• Системы охлаждения для внешних жестких дисков. Основы воздушного охлаждения и подавления шума жесткого диска

    Давно занимаюсь вопросом охлаждения HDD.
    Первые два жёстких диска, которые были у меня - обходились без оного, были сами по себе не слишком горячими, да и я особо в железных внутренностях компьютера не разбирался. Потом начал железом интересоваться, собрал второй системник уже своими руками, озаботился нагревом HDD, ибо при долгой работе он становился довольно горячим, иногда почти обжигающим.
    После перебора решений, представленых на рынке, была отброшена 5"-панель с мелким кулером спереди, перебраны многие варианты "набрюшных" кулеров.
    На некоторое время я успокоился, и просто ставил на каждый хард по кулеру, запитанному от +5 вольт вместо +12 - так достигалась тихая работа при хорошей эффективности.
    В последнее время основной мой компьютер становился всё мощнее и при этом всё тише. На фоне остальных охлаждающих элементов стали слышны втулки и движки вентиляторов на хардах. К тому же через мои руки уже прошло довольно большое количество таких кулеров, и часто даже на +5 вольтах они продолжали шуметь - то двигло обмотками тарахтит, то крыльчатка воздухом гудит... Лоторея, в общем. Плюс обнаружилась проблема загрязнения (правда, у кулеров в 5"-отсек с 40мм вентилятором на "морде" с этим ещё хуже) - кулер при своих небольших оборотах умудрялся довольно много забивать пыли под ножки микросхем, не думаю что хардам это приносило пользу.

    Задумался, чем можно заменить эти "жужжалки"... На передней панели большинства АТХ-корпусов сейчас есть вентилятор, в большинстве полноразмерных АТХ - 120 миллиметровый. Зачем лишние кулеры на HDD, когда рядом уже есть кулер? Попробовал снять с хардов вентиляторы... "Банки" оставались довольно горячими, но руку держать можно было (мониторинг показывал 40...47 градусов при комнатной +25), но вот микросхемы на платах было крайне жалко. Сейчас обычно на платах самые греющиеся элементы - это процессор и драйвер двигателя/голов. Иногда ещё какой-нибудь стабилизатор питания. Для интереса померял температурные режимы микросхем... У типичного современного HDD в покое процессор нагревается до 40...55 градусов, т.е. руке уже достаточно горячо (у меня болевой порог примерно на 45 градусах), драйвер шпинделя ещё горячее - в покое обычно 45...60, а при случайном поиске температура быстро подпрыгивает выше и спокойно уходит за 70...80 градусов (мерял цифровым термометром). Термодатчик же обычно установлен на плате вне микросхем и/или в "банке" и его температура ниже.

    Алюминиевый радиатор можно легко купить в магазине, если его размеры немного не подходят - легко обрезать лишнее. Термопрокладки в продаже не видел (не искал ), но их легко найти в сломаных CD/DVD-приводах (через них отводится тепло с микросхем драйверов двигателей на корпус устройства) или на видеокартах (между радиаторами и микросхемами памяти). Если толщины одной не хватает - можно набрать несколько.
    Материалы довольно доступные.

    Заехав как то раз за деталями в известный магазин радиодеталей вспомнил, что надо подобрать радиатор для этого проекта. Подобрал. Называется "HS 530-100". Рёбра невысокие, с дополнительными канавками для увеличения площади теплообмена, основание толще чем рёбра, на один HDD по ширине - выше крыши, на глаз прикинул в магазине - может и на два харда хватит... То что надо, купил. Дома примерил радиатор к хардам - на всех нашедшихся HDD он накрывал все "горячие точки", при этом был короче самого HDD. По ширине на два HDD хватало с большой натяжкой... Но всё же решил распилить его в расчёте на два харда.

    Потом распотрошил несколько сломаных CD-ROM"ов, вытащил из них термопрокладки.

    По случаю установки нового HDD, решил опробовать проект в деле. Харды были разложены на столе, с них скручены старые "набрюшные" кулеры. Рядом расположились радиаторы и термопрокладки с термопастой.
    Радиатора, после распилки на два, хватало с трудом - края уже висели между серединами крепёжных отверстий, винты с трудом цеплялись за радиатор.

    Как это было.
    Берём хард, ищем "горячие" места. Можно прикинуть даже у выключенного HDD - это обычно микросхемы, они довольно крупные. Если плата перевёрнута (HDD WD или последние "плоские" Seagate), то по нагреву или нелакированным плошадкам - с другой стороны к таким площадкам "брюхом" припаиваются микросхемы для организации теплоотвода через плату. Между площадками несколько переходных отверстий для улучшения теплопроводности.

    На найденые области кладём термопрокладки, прикидывая расстояние между элементом и поверхностью радиатора. Если толщины не хватает - делаем "бутерброд". Стараемся сделать так, чтобы сильного давления на плату не было, но и чтобы термопрокладки не болтались. Если термопрокладка липкая - кладём как есть, если гладкая - мажем соприкасаемые поверхности термопастой.

    Кладём сверху радиатор, стараясь им не елозить, чтобы не свезти термопрокладки, и прикручиваем. Резьба у винтов та же, что и у тех, которыми харды обычно прикручиваются к корзине.

    Проверяем на просвет, на месте ли термопрокладки.

    Отказ компьютера может поставить ваш бизнес или учебный проект в тупик. Практически каждый сотрудник современной компании ведёт все свои дела на компьютерной рабочей станции. Потеря доступа к вашему компьютеру даже на час может привести к огромным потерям в ежедневных продажах и доходах. Конечно, каждый рассчитывает на то, что его компьютер будет работать без проблем всё время. Но большинство людей не осознаёт, что самым важным элементом любого ПК является не Wi-Fi, монитор или даже клавиатура, а жёсткий диск , скрытый глубоко внутри устройства. Чрезвычайно важно убедиться, что ваш жёсткий диск защищён и поддерживается на протяжении всего срока службы вашего компьютера. Если вы не сохраните его, он может выйти из строя и забрать с собой все ваши данные.

    Правила охлаждения HDD-диска.

    Первые компьютеры, которые когда-либо были сделаны, могли работать только при постоянной температуре, примерно комнатной. Чтобы достичь соответствующих температурных и влажностных условий и обеспечить бесперебойную работу ПК, необходимо было использовать специальные системы охлаждения. С тех пор всё кардинально изменилось. Современные компьютеры могут работать при более высоких температурах окружающей среды, выполняя миллионы вычислений в секунду больше. Методы охлаждения для современных компьютеров, которые были изобретены и испытаны за последние годы, были значительно минимизированы. У каждого из них свои преимущества и недостатки. Чтобы вы могли выбрать тот, который соответствует вашим потребностям, для начала ознакомьтесь с их особенностями.

    Перегрев является одной из наиболее распространённых проблем, возникающих у пользователей с их жёсткими дисками. Важно, чтобы владельцы компьютеров понимали, что перегрев – это не просто незначительное неудобство. Исследования показывают, что горячий жёсткий диск является предвестником его отказа. Отказ жёсткого диска приводит к тому, что люди теряют все свои данные, особенно если нет соответствующей системы резервного копирования . Когда профессионал теряет все свои данные, это может нанести огромный ущерб бизнесу. Перегрев – это то, что легко определить: корпус вашего ноутбука или компьютера может быть тёплым или горячим наощупь. Некоторые из других контрольных признаков надвигающегося отказа компьютера включают в себя:

    • Значительная задержка при загрузке или медленный доступ к файлам.
    • Странные звуки – особенно громкие щелчки.
    • Вентиляторы работают дольше и громче, чем обычно.
    • Данные исчезают или становятся повреждёнными.
    • «Синий экран смерти».

    Причины перегрева жёсткого диска

    Заблокированный поток воздуха. Воздух должен поступать в компьютер, чтобы вентиляторы могли выполнять свою работу. Убедитесь, что ваш компьютер находится там, где ничто не препятствует попаданию воздуха в вентиляционные отверстия. Неисправные вентиляторы. Когда вентилятор загрязняется, он должен работать усерднее, чтобы поддерживать надлежащую температуру и перегревать жёсткий диск. Чистите кулеры каждые 3-6 месяцев. Пыль. Пыль не только блокирует поток воздуха, но и изолирует компоненты, которые должны охлаждаться вентиляторами. Пыль – ваш враг! Разместите свой компьютер в таком месте, где минимум пыли и которое легко содержать в чистоте.

    Достоинства и недостатки

    Распространённой проблемой в создании продукта, особенно в электронике, является управление температурным режимом для достижения оптимальной эффективности. Суть задачи заключается в разработке энергосберегающих микропроцессоров и печатных плат (PCB), которые не будут перегреваться. Часто пропускаемым аспектом решения проблем терморегулирования компьютера является архитектурное проектирование. Будь то частный дом, офисное здание или выделенная серверная комната, архитектурные соображения могут оказать огромное влияние на доступные решения по управлению температурным режимом. Для решения и уменьшения трудностей и неэффективности, возникающих в результате нагрева, инженеры используют различные системы охлаждения жёсткого диска для управления условиями. Эти системы можно разделить на две основные категории: с активными и пассивными методами охлаждения. Но в чём разница между ними?

    Пассивное охлаждение

    Преимущества пассивных методов охлаждения заключаются в энергоэффективности и более низких финансовых затратах. Пассивное охлаждение обеспечивает высокий уровень естественной конвекции и рассеивания тепла благодаря использованию теплораспределителя или теплоотвода для максимизации режимов радиационного и конвекционного теплообмена. Другими словами, пассивное охлаждение основывается на использовании воздуха, проходящего через корпус ПК и его кулеры. Пассивное управление температурой – это экономичное и энергосберегающее решение, которое опирается на радиаторы, теплораспределители, тепловые трубки или материалы теплового интерфейса (TIM) для поддержания оптимальных рабочих температур.

    Активное охлаждение

    Активное охлаждение, с другой стороны, относится к технологиям охлаждения, которые для улучшения теплообмена полагаются на внешнее устройство. Благодаря технологиям активного охлаждения во время конвекции скорость потока увеличивается, что резко увеличивает скорость отвода тепла. Решения для активного охлаждения включают принудительную подачу воздуха через вентилятор или нагнетатель, принудительную подачу жидкости и термоэлектрические охладители (TEC), которые можно использовать для оптимизации управления температурой жёсткого диска. Вентиляторы используются, когда естественной конвекции для отвода тепла недостаточно. Они обычно интегрированы в электронику, например в корпус компьютера, или подключены к процессорам, жёстким дискам или наборам микросхем для поддержания тепловых условий и снижения риска отказов. Основным недостатком активного управления температурным режимом является то, что он требует использования электроэнергии и, следовательно, приводит к более высоким затратам по сравнению с пассивным.

    Пассивные системы охлаждения HDD

    Как и в случае активного воздушного охлаждения жёсткого диска, в пассивном воздушном охлаждении используется пластина, которая имитирует большую охлаждающую поверхность детали. Но при пассивном воздушном охлаждении эта пластина в несколько раз больше, чем при активном, и это потому что в рёбрах нет вентилятора, который мог бы направлять воздух туда, куда нужно. Рёбра должны быть достаточно большими, и между ними должно быть достаточно места, чтобы можно было обеспечить естественный поток воздуха. Охлаждающие пластины могут быть очень тяжёлыми и иногда требуют фиксации поверх охлаждаемой детали, чтобы не повредить жёсткий диск или плату, а также чтобы до них доставал поток воздуха от кулера. Пассивное воздушное охлаждение является наиболее эффективным способом с точки зрения энергосбережения, поскольку для его работы фактически не требуется питания.

    Этот метод имеет главный недостаток: вес. Тяжёлые и большие пластины должны быть закреплены на мелких деталях и жёстких дисках, увеличивая общий вес компьютера и уменьшая полезную площадь внутри корпуса. Кроме того, температура окружающей среды не может быть очень высокой, поскольку это сделает пассивное воздушное охлаждение неэффективным. Во многих случаях корпус компьютера имеет 1-2 вентилятора для циркуляции воздуха внутри. Надёжность системы очень высокая. Если требования к охлаждению HDD соответствуют способности этой системы, то это выбор номер один. Стоимость обслуживания составляет всего 0.

    Активные системы охлаждения жёстких дисков

    Вентилятор подаёт свежий воздух на охлаждающую пластину, расположенную над жёстким диском. Пластина обычно имеет плоскую поверхность, которая одной стороной касается охлаждаемой детали, а на другой располагается несколько рёбер. Эти рёбра увеличивают поверхность пластины и, следовательно, её теплообменную способность. Вентилятор делает циркуляцию более быстрой и эффективной, поскольку удаляет тепловую поверхность воздуха, которая образуется между рёбрами. Активное воздушное охлаждение винчестера является эффективным с точки зрения энергосбережения с одним основным недостатком: оно может снизить рабочую температуру детали только до температур, которые всегда выше, чем температура окружающей среды. Это может быть проблемой, когда ПК работает в жёстких условиях или рядом с ним есть другие компоненты, которые могут создавать высокие температуры во время работы.

    Надёжность этих систем очень высока, потому что даже если вентилятор перестанет работать, система может действовать в течение нескольких минут в качестве пассивного воздушного охлаждения. Более того, когда вентилятор вот-вот выйдет из строя, за несколько дней он обычно издаёт странный звук, давая пользователю достаточно времени для замены. Расходы на обслуживание этой системы невелики и доступны для всех.

    Водяное охлаждение

    Это довольно новая тенденция в системах охлаждения корпусов ПК и жёстких дисков. Базовая система состоит из охлаждающих пластин, шлангов, через которые проходит охлаждающая жидкость, небольшого бака для охлаждающей жидкости, циркуляционного насоса и радиатора. К каждому охлаждаемому компоненту прикреплена охлаждающая пластина. Она обычно изготавливается из меди или алюминия и представляет собой пустотелую пластину с входом и выходом для охлаждающей жидкости. Циркуляционный насос будет циркулировать охлаждающую жидкость от радиатора к пластинам, затем к резервуару и обратно к радиатору. В радиаторе охлаждающая жидкость снижает температуру. В зависимости от типа радиатора, водяное охлаждение также можно разделить на активное и пассивное.

    • Пассивное водяное охлаждение: при этом методе радиатор изготавливается из длинного тонкого медного или алюминиевого шланга, который имеет ребра, изготовленные из одного и того же материала, различными способами прикреплёнными к его периметру. Когда горячая охлаждающая жидкость проходит через трубу, она охлаждается до температуры окружающей среды.
    • Активное водяное охлаждение: с помощью этого метода вода охлаждается не естественным путём, а с использованием других средств охлаждения, таких как небольшие фреоновые термоэлементы Пельтье.

    В некоторых случаях охлаждающая жидкость может циркулировать естественным образом. Для этого резервуар и радиатор должны быть размещены выше, чем самая высокая охлаждающая пластина системы (то есть выше, чем HDD), шланги должны быть большего диаметра, а радиатор должен быть спроектирован так, чтобы охлаждающая жидкость могла проходить по нему свободно. В общем, водяное охлаждение может быть довольно грязным, когда в соединениях труб происходит сбой. Для работы насоса также требуется много энергии, что снижает его эффективность, но это можно обойти, если выбрать естественный поток. С другой стороны, при активном водяном охлаждении рабочая температура может быть быстро понижена до температуры окружающей среды или даже ещё меньше.

    Основным недостатком является надёжность системы, поскольку сбой в работе насоса будет означать почти мгновенное повышение температуры HDD и других компонентов ПК, поэтому для повышения надёжности необходимо принять специальные меры безопасности. Кроме того, у водяного охлаждения есть технические проблемы, когда его пытаются применить к различным компонентам ПК, таким как дополнительные жёсткие диски, планки памяти, микросхемы мостов север/юг и т. д. Не все детали могут быть оснащены пластинами водяного охлаждения, что делает этот способ недоступным. Поэтому вентиляторы для циркуляции воздуха внутри корпуса в этих системах присутствуют почти всегда. Стоимость установки и сервиса иногда выше, чем в предыдущих вариантах, так как требуется регулярное техническое обслуживание насоса.

    Выбор наиболее подходящего метода охлаждения жёсткого диска связан с определёнными требованиями. Потребляемая мощность, температура окружающей среды, влажность, рабочая температура и корпус деталей являются наиболее важными параметрами, которые необходимо учитывать при выборе метода охлаждения. Если вы уже сталкивались с выбором системы охлаждения для своего HDD или других компонентов ПК, поделитесь об этом с нашими читателями в комментариях под статьёй.

    Вы хотите продлить жизнь своему жесткому диску? Вы готовы потратить лишние 5-10 долларов на систему охлаждения для него? Давайте разберёмся, какие вообще варианты есть.

    Типов охлаждения не так много:

    • В первую очередь это, конечно же, воздушное охлаждение . Подавляющее большинство подобных систем представляют собой пластиковую или металлическую рамку с вентилятором, которая прикручивается к жесткому диску снизу. А питаниена вентилятор берется при помощи спецпереходникаот свободного разъема блока питания. Также встречается вариант с установкой в гнездо 5,25 (это куда DVD-привод умещается) специального переходника для крепления винчестера, а вентилятор (или вентиляторы) ставится вместо заглушки на «фасаде»
    • Во вторую очередь, это пассивные системы охлаждения . То есть просто специально сконструированный радиатор, который крепится к жесткому диску, соприкасаясь с греющимися частями «винчестера» и отводит тепло в окружающую среду «самотёком», за счет большой площади теплоотдачи.
    • Ну и в третью очередь можно упомянуть о жидкостных системах охлаждения . Но это — малоинтересная экзотика, практическое применение которой практически отсутствует. К достоинствам жидкостных систем можно отнести очень хорошую теплоэффективность и равномерность отвода тепла (Исключение составляют моддеры, оверклокеры и пр. «самоделкины»)