• Трехфазный инвертор со звеном постоянного тока и способ управления им. Схемы любительских частотных преобразователей Трехфазный задающий генератор на микроконтроллере

    Изобретение относится к устройствам преобразовательной техники и может быть использовано для питания с частотой 400 Гц бортовых систем летательных аппаратов (ЛА), а также для питания высокочастотного инструмента частотой 400 Гц или 200 Гц. Технический результат заключается в упрощении конструкции, уменьшении массогабаритных показателей устройства, повышении надежности и качества выходного напряжений за счет контроля и управления генератором паузы. Для этого заявленное устройство, которое выполнено по мостовой схеме, содержащий полностью управляемые ключи с встречно-параллельно соединенными диодами, нагрузки фаз, соединенные по схеме звезда, и блок управления, включает новый, согласно техническому решению, блок управления, состоящий из задающего генератора, генератора паузы включения управляющих ключей, формирователя трехфазной последовательности импульсов и задатчика параметров периода выходного напряжения Т и коэффициента мощности нагрузки cos φ н, вход которого подключен к цепи нагрузки. Другой объект - способ управления трехфазным инвертором со звеном постоянного тока снабжен блоком управления, формирующим паузу между включениями управляемых ключей, и длительность паузы между включениями управляемых ключей противофазных плеч инвертора при значениях cos φ н =1,0÷0,8 составляет 0,05Т÷0,044Т. 2 н.п. ф-лы, 2 ил.

    Изобретение относится к устройствам преобразовательной техники, может быть использовано для питания с частотой 400 Гц бортовых систем летательных аппаратов (ЛА), а также для питания высокочастотного инструмента частотой 400 Гц или 200 Гц.

    Известны трехфазные инверторы со звеном постоянного тока, включением нагрузки по схеме звезда, с продолжительностью (λ) открытого состояния управляемых ключей половины периода (λ=180° эл.), в которых фазное напряжение на нагрузке имеет двухступенчатую форму [Справочник по преобразовательной технике. Под ред. И.М.Чиженко. Киев. Изд-во: Техника, 1978, с.131, 132, рис.3.38 и 3.39б,в].

    Недостатками таких инверторов являются относительно низкая надежность из-за возможности протекания сквозных токов через противофазные управляемые вентили всех фаз при переключении, а также высокий коэффициент нелинейных искажений, т.е. значительное отличие выходного напряжения от синусоидального.

    Существуют схемы формирования трехфазных последовательностей импульсов управления вентилями каждой фазы, но они не позволяют формировать интервал между включениями противофазных вентилей [В.Л.Шило. Популярные цифровые микросхемы: Справочник. - М.: Металлургия, 1988, с.59, рис.1.38а, б].

    Наиболее близким техническим решением к данному изобретению является трехфазный инвертор со звеном постоянного тока, который выполнен по мостовой схеме, содержащий полностью управляемые ключи с встречно-параллельно соединенными диодами, нагрузки фаз, соединенные по схеме звезда, блок управления и вспомогательные ключи, соединенные с соответствующими фазами нагрузки и дополнительным конденсатором, причем основные ключи находятся в проводящем состоянии 5/12Т, а вспомогательные 1/12Т, где Т - период выходного напряжения [Патент (РФ) №2125761, Н02М 7/5387,1999].

    Недостатками данного устройства являются большое число дополнительных элементов, сложность, а также относительно низкая надежность.

    Задачей, на решение которой направлено заявляемое изобретение, является упрощение конструкции, уменьшение массогабаритных показателей устройства, повышение надежности и качества выходного напряжения за счет контроля и управления генератором паузы.

    Задача решается тем, что в трехфазный инвертор со звеном постоянного тока, выполненный по мостовой схеме, содержащий полностью управляемые ключи с встречно-параллельно соединенными диодами, нагрузки фаз, соединенные по схеме звезда, блок управления, согласно изобретению блок управления содержит задающий генератор, формирователь трехфазной последовательности импульсов и задатчик параметров периода выходного напряжения Т и коэффициента мощности нагрузки cos φ н, вход которого подключен к цепи нагрузки, генератор паузы включения управляемых ключей и первый, второй, третий дешифратор управляющих импульсов ключей противофазных плеч соответствующих фаз инвертора, входы которых соединены с выходом генератора паузы включения управляемых ключей и соответствующими выходами формирователя трехфазной последовательности импульсов, выход задающего генератора подключен к первому входу генератора паузы включения управляемых ключей и второму входу задатчика параметров периода выходного напряжения Т и коэффициента мощности нагрузки cos φ н.

    Поставленная задача решается также способом управления трехфазным инвертором со звеном постоянного тока, по которому согласно изобретению длительность паузы между включениями управляемых ключей противофазных плеч инвертора при cos φ н =1,0÷0,8 задают 0,05Т÷0,044Т.

    Сущность изобретения поясняется чертежами. На фиг.1 приведена схема трехфазного инвертора, на фиг.2 - временные диаграммы напряжений.

    Инвертор состоит из силовых модулей 1-6, состоящих из ключей и диодов, включенных встречно-параллельно ключам, которые соединены по мостовой схеме одним зажимом с отрицательным зажимом источника питания 7, а другим - с соответствующей фазой нагрузки 8. Блок управления 9 состоит из задающего генератора 10, формирователя трехфазной последовательности импульсов 11, первого дешифратора управляющих импульсов 12, второго дешифратора управляющих импульсов 13, третьего дешифратора управляющих импульсов 14 каждой фазы А,В,С, генератора паузы 15 и задатчика параметров периода выходного напряжения Т, коэффициента мощности нагрузки cos φ н 16 (фиг.1).

    От задающего генератора 10 поступают импульсы (U10) (фиг.2) формирователю трехфазной последовательности импульсов 11, выдающего импульсы управления (U11) на верхние и нижние силовые модули 1-6 каждого плеча моста в течение полупериода выходного напряжения. Длительность паузы между включениями противофазных плеч инвертора (tп) задается генератором паузы 15, на вход которого подаются импульсы с задающего генератора 10. Генератор паузы 15 осуществляет одновременное введение паузы в первый, второй, третий дешифраторы управляющих импульсов 12, 13, 14. Импульсы поступают с блока управления 9 на верхние (U1) и нижние (U2) силовые модули 1-6 каждого плеча моста с паузой между включениями противофазных плеч инвертора. Задатчик параметров периода выходного напряжения Т и коэффициента мощности нагрузки cos φ н 16, на вход которого поступают с задающего генератора 10 импульсы, осуществляет контроль и управление генератором паузы 15 по полученным значениям периода выходного напряжения Т, коэффициента мощности нагрузки cos φ н с нагрузки фаз 8.

    Как видно из временных диаграмм, напряжение на нагрузке (U8) имеет трехступенчатую форму с паузой между включениями управляемых ключей противофазных плеч инвертора, что приближает форму фазного напряжения к синусоидальной. Это приводит к уменьшению содержания нечетных гармоник, следовательно, улучшается качество выходного напряжения устройства.

    Пример конкретной реализации способа.

    От задающего генератора 10 подают импульсы формирователю трехфазной последовательности импульсов 11, выдающего импульсы управления на верхние и нижние силовые модули 1-6. Длительность паузы между включениями противофазных плеч инвертора для значения cos φ н =1,0 задают генератором паузы 15, равной значению 0,05Т. Генератор паузы 15 осуществляет одновременное введение значения 0,05Т в первый, второй, третий дешифраторы управляющих импульсов 12,13,14. Импульсы поступают с блока управления 9 на верхние и нижние силовые модули 1-6 каждого плеча моста с паузой, равной значению 0,05Т между включениями противофазных плеч инвертора, формируя трехступенчатую форму выходного напряжения.

    Применение данного трехфазного инвертора позволяет упростить схему, уменьшить габариты и вес, повысить надежность устройства. Способ управления трехфазным инвертором со звеном постоянного тока приближает форму выходного напряжения к синусоидальной, что улучшает качество выходного напряжения при значениях cos φ н =1,0÷0,8.

    1. Трехфазный инвертор со звеном постоянного тока, выполненный по мостовой схеме, содержащий полностью управляемые ключи с встречно-параллельно соединенными диодами, нагрузки фаз, соединенные по схеме звезда, блок управления, отличающийся тем, что блок управления содержит задающий генератор, формирователь трехфазной последовательности импульсов и задатчик параметров периода выходного напряжения Т и коэффициента мощности нагрузки cos φ н, вход которого подключен к цепи нагрузки, генератор паузы включения управляемых ключей и первый, второй, третий дешифраторы управляющих импульсов ключей противофазных плеч соответствующих фаз инвертора, входы которых соединены с выходом генератора паузы включения управляемых ключей и соответствующими выходами формирователя трехфазной последовательности импульсов, выход задающего генератора подключен к первому входу генератора паузы включения управляемых ключей и второму входу задатчика параметров периода выходного напряжения Т и коэффициента мощности нагрузки cos φ н.

    2. Способ управления трехфазным инвертором со звеном постоянного тока, отличающийся тем, что длительность паузы между включениями управляемых ключей противофазных плеч инвертора при cos φ н =1,0÷0,8 задают 0,05÷0,044Т.

    Похожие патенты:

    Изобретение относится к электротехнике, а именно к однофазным полумостовым транзисторным инверторам, предназначено для использования в электротехнической промышленности и может применяться в различных вторичных источниках питания, например в электросварочных аппаратах, зарядных устройствах, источниках тока с высокой стабилизацией выходного выпрямленного тока и т.п.

    Изобретение относится к области электротехники и может быть использовано на электроподвижном составе с тяговыми асинхронными двигателя, питающимися от контактной сети постоянного тока, в частности на электроподвижном составе вагонов метрополитена.

    Изобретение относится к преобразовательной технике и может быть использовано для индукционного нагрева и плавки металлов. .

    Изобретение относится к области электротехники и может быть использовано в высоковольтных устройствах, вращающейся машине или в двигателе транспортного средства для преобразования переменного тока в постоянный или наоборот или для изменения формы, амплитуды и частоты тока

    Изобретение относится к области электротехники и может быть использовано в приводах и высоковольтной технике. Техническим результатом является повышение надежности за счет исключения полного отказа установки, использующей вентильный преобразователь. В вентильном преобразователе переменного тока тормозное сопротивление имеет несколько отдельных тормозных сопротивлений (18), которые, соответственно, являются частью биполярного подмодуля (14), причем подмодули (14), при образовании последовательного соединения подмодулей, включены последовательно и по меньшей мере частично содержат накопитель (16) энергии в параллельном соединении с соответственно сопоставленным отдельным тормозным сопротивлением (18) и управляемый силовой полупроводник (28) торможения, который в положении торможения допускает протекание тока через соответственно сопоставленное отдельное тормозное сопротивление (18), а в положении нормального режима работы прерывает протекание тока через него. 2 н. и 11 з.п. ф-лы, 12 ил.

    Изобретение относится к области электротехники и может быть использовано для управления множеством силовых преобразователей, в частности электронных частотных преобразователей, посредством беспроводной связи. Техническим результатом является повышение быстродействия и точности управления. В способе и системе беспроводного управления переключающими устройствами каждый силовой преобразователь содержит полупроводниковые устройства большой мощности. Управляющие сигналы передаются между контроллером и беспроводным узлом одного или более из указанного множества силовых преобразователей с использованием беспроводной системы связи. Управляющие сигналы передаются в локальный беспроводной узел одного или более из множества силовых преобразователей. Передача данных включает пакеты данных, содержащие такую управляющую информацию, что временной модуль локального беспроводного узла может быть синхронизирован с использованием временной синхронизирующей информации беспроводной системы связи. В качестве других аспектов настоящего изобретения описываются система, применяющая указанный способ, и компьютерная программа для выполнения указанного способа. 3 н. и 20 з.п. ф-лы, 3 ил.

    Изобретение относится к области электротехники и может быть использовано в устройствах регулирования мощности, передаваемой в нагрузку. Технический результат - повышение энергетической эффективности и надежности. В мостовой преобразователь напряжения, выполненный на транзисторах, введена дополнительная конденсаторная цепь, включенная между первым и вторым выводами выходной цепи транзисторного моста. В простейшем случае дополнительная конденсаторная цепь содержит один конденсатор. В другом варианте устройства дополнительная конденсаторная цепь выполнена в виде четырех конденсаторов, и первый, второй, третий и четвертый ее конденсаторы включены параллельно выходным цепям соответственно первого, второго, третьего и четвертого силовых транзисторов. 3 з.п. ф-лы, 4 ил.

    Изобретение относится к области электротехники и может быть использовано в системах БП и обратных преобразователях Технический результат - повышение надежности и эффективности для пользователей и поставщиков. Способ и устройство для обеспечения решения по несовместимости между системами бесперебойного питания (БП) несинусоидального колебания и нагрузками с активной коррекцией коэффициента мощности (ККМ) включает в себя этапы, на которых: генерируют несинусоидальное сигнальное колебание (к примеру, колебание напряжения), подлежащее доставке в нагрузку, со скважностью широтно-импульсной модуляции (ШИМ); дискретизируют это несинусоидальное колебание для накопления выходных сигнальных отсчетов и регулируют скважность для управления несинусоидальным сигнальным колебанием в зависимости от выходных сигнальных отсчетов, чтобы доставлять в нагрузку желаемую сигнальную характеристику (к примеру, среднеквадратичный сигнальный уровень). В вариантах осуществления изобретения выходная скважность регулируется по-разному в случаях, соответственно, нарастающего и падающего потребления мощности нагрузкой. 3 н. и 17 з.п. ф-лы, 14 ил.

    Изобретение относится к преобразователям электрической энергии, конкретно к автономным инверторам напряжения и может быть использовано во вторичных источниках питания в общепромышленной технике, а так же в преобразователях собственных нужд для локомотивов на железнодорожном транспорте. Техническим результатом изобретения является уменьшение массогабаритных размеров преобразователя. Указанный технический результат достигается тем, что преобразователь постоянного тока в переменный ток, содержащий источник постоянного напряжения с конденсатором на выходе, мостовой инвертор напряжения, состоящий из четырех ключей, каждый из которых состоит из транзистора и обратного диода, выводы постоянного тока которого соединены с выходом источника постоянного напряжения, а выводы переменного тока подключены к первичной обмотке трансформатора, вторичная обмотка которого подключена к нагрузке, систему управления, кроме этого в магнитопровод трансформатора встроен датчик Холла, выход которого подключен к входу системы управления, выходы которой подключены к входам первого и второго драйверов, каждый из которых управляет двумя последовательно включенными ключами мостового инвертора напряжения. 1ил.

    Изобретение относится к трехфазному источнику бесперебойного питания. Технический результат заключается в осуществлении заявленного изобретения без использования ступенчатого изменения в работе двух преобразователей электроэнергии так, чтобы на нагрузку могла подаваться стандартная трехфазная электроэнергия. Для этого заявленная схема преобразователя электроэнергии, содержащая вход, включающая множество входных линий, каждая из которых предназначена для соединения с фазой многофазного источника электроэнергии переменного тока, имеющей синусоидальный сигнал; множество шин постоянного тока, включающее первую положительную шину постоянного тока, имеющую первое номинальное напряжение постоянного тока, вторую положительную шину постоянного тока, имеющую второе номинальное напряжение постоянного тока, первую отрицательную шину постоянного тока, имеющую третье номинальное напряжение постоянного тока, и вторую отрицательную шину постоянного тока, имеющую четвертое номинальное напряжение постоянного тока; схему преобразователя электроэнергии, включающую первый преобразователь электроэнергии и второй преобразователь электроэнергии, каждый из которых соединен с входом переменного тока и по меньшей мере одной из множества шин постоянного тока. 3 н. п. ф - лы, 17 з. п. ф - лы, 16 ил.

    Изобретение относится к области электротехники и может быть использовано в преобразователях мощности. Технический результат - повышение коэффициента мощности и коэффициента полезного действия. Звено (3) DC содержит конденсатор (3а), подключенный параллельно выходу схемы (2) преобразователя, и выдает пульсирующее напряжение (vdc) звена DC. Схема (4) инвертора преобразует выход звена (3) DC в АС путем коммутации и подает АС в подключенный к ней двигатель (7). Контроллер (5) управляет коммутацией схемы (4) инвертора таким образом, что токи (iu, iv и iw) двигателя пульсируют синхронно с пульсацией напряжения (vin) питания. Контроллер (5) управляет коммутацией схемы (4) инвертора в соответствии с нагрузкой двигателя (7) или рабочим состоянием двигателя (7) и снижает амплитуду пульсации токов (iu, iv и iw) двигателя. 5 з.п. ф-лы, 5 ил.

    Изобретение относится к области преобразовательной техники и может быть использовано, например, в системах регулируемого электропривода переменного тока и в системах вторичного электропитания. Технический результат заключается в разработке автономного инвертора напряжения, позволяющего снизить потери мощности за счет обеспечения минимального сопротивления цепи, по которой протекает ток каждой фазы, при сохранении низкого уровня высших гармоник напряжения на фазах двигателя. Для этого заявленное устройство содержит первый электрический мост из трех параллельно соединенных полумостов, выполненных из нескольких последовательно соединенных транзисторов, зашунтированных обратными диодами, второй шестиплечевой электрический мост, представляющий собой три параллельно соединенных полумоста, выполненных из двух последовательно соединенных пар транзисторов, каждая из которых состоит из двух соединенных разноименными силовыми выводами транзисторов, и делитель напряжения из трех последовательно соединенных конденсаторов. Первый и четвертый выходы делителя напряжения подключены к входам первого электрического моста, а второй и третий его выходы - к входам второго электрического моста. Выходы одноименных полумостов первого и второго мостов соединены между собой и подключены к соответствующей фазе двигателя. 1 ил.

    Изобретение относится к силовой преобразовательной технике и является устройством, реализующим энергетически эффективный импульсный способ регулирования мощности, передаваемой в нагрузку. Технический результат - повышение энергетической эффективности и надежности. Устройство представляет собой двухтактный мостовой преобразователь напряжения, который содержит транзисторы (силовые управляемые ключи), образующие транзисторную мостовую схему, и двухполюсник нагрузки транзисторной мостовой схемы. Первый и второй транзисторы транзисторной мостовой схемы, соединенные последовательно, образуют первую транзисторную цепь, которая включена между шинами питания. Третий и четвертый транзисторы транзисторной мостовой схемы, соединенные последовательно, образуют вторую транзисторную цепь, которая включена между шинами питания. Средние точки первой и второй транзисторных цепей являются соответственно первым и вторым выводами выходной цепи транзисторной мостовой схемы, и с ними соединены первый и второй выводы двухполюсника нагрузки транзисторной мостовой схемы. Первый и второй транзисторы управляются парафазными импульсными сигналами первой их последовательности, а третий и четвертый транзисторы управляются парафазными импульсными сигналами второй их последовательности. Вторая последовательность парафазных импульсных сигналов сдвинута по времени относительно первой последовательности. Поставленные цели достигаются тем, что введены дополнительно дроссели и С-цепи, содержащие конденсаторы. Первый вывод обмотки первого дросселя непосредственно соединен с первым выводом выходной цепи транзисторной мостовой схемы, а второй вывод обмотки первого дросселя подключен к шинам питания или к шине питания через конденсаторы или конденсатор первой С-цепи. Первый вывод обмотки второго дросселя непосредственно соединен со вторым выводом выходной цепи транзисторной мостовой схемы, а второй вывод обмотки второго дросселя подключен к шинам питания или к шине питания через конденсаторы или конденсатор второй С-цепи. В первом варианте схемы предлагаемого устройства введены дополнительные конденсаторы, и в первой и второй транзисторных цепях каждый из содержащихся в них транзисторов или один из них шунтирован соответствующим дополнительным конденсатором. Во втором варианте схемы предлагаемого устройства введены дополнительные диоды. Второй вывод обмотки первого дросселя подключен к первой и второй шинам питания через соответственно первый и второй дополнительные диоды. Второй вывод обмотки второго дросселя подключен к первой и второй шинам питания через соответственно третий и четвертый дополнительные диоды. 2 з.п. ф-лы, 3 ил.

    Изобретение относится к устройствам преобразовательной техники и может быть использовано для питания с частотой 400 Гц бортовых систем летательных аппаратов, а также для питания высокочастотного инструмента частотой 400 Гц или 200 Гц

    Для питания различных приборов хозяйственного и промышленного назначения требуется трехфазная сеть переменного тока с частотой 200 или 400 гц. Для получения такого напряжения, в большинстве случаев используют соответствующий электромеханический трехфазный генератор, ротор которого приводится в движение при помощи однофазного электродвигателя, питаемого от сети 220В.

    Предлагаемый электронный генератор позволяет решить эту проблему с лучшим коэффициентом полезного действия.

    Если изучить диаграмму трехфазного напряжения можно увидеть три синусоидальных сигнала, сдвинутых последовательно на 1/3 периода. Если предполагается частота 200 Гц, то период составляет 5 mS. Следовательно 1/3 периода равна 1,666... mS. Таким образом получается, что если у нас будет исходное однофазное напряжение 200 Гц, пропустив его через две последовательно включенные линии задержки, каждая из которых вносит задержку по 1,666.. mS мы получим трехфазное напряжение, одна фаза -напряжение исходное, и две фазы напряжения с выходов соответствующих линий задержки.

    Принципиальная схема устройства, работающего на таком принципе показана на рисунке. Все исходные сигналы прямоугольные, их преобразование в синусоидальные происходит в индуктивностях выходных трансформаторов Т1-Т3.

    Мультивибратор на микросхеме D1 вырабатывает прямоугольные импульсы частотой 200 Гц. Эти импульсы поступают на вход электронного высоковольтного ключа на транзисторах VT1 и VT4, на выходе которого включена первичная обмотка трансформатора Т1. В результате на обмотку поступает импульсное напряжение 300В. ЭДС самоиндукции сглаживает эти импульсы до формы, близкой к синусоидальной и на вторичной обмотке Т1 формируется переменное напряжение частотой 200 гц. Таким образом формируется фаза "А".

    Для формирования фазы "В" импульсы частотой 200 Гц с выхода D1 поступают на схему задержки, имеющую постоянную времени равную 1,666 mS. С выхода D1.2 импульсное напряжение, сдвинутое на 1/3 фазы по сравнению с напряжением на выходе D1.3, поступает на второй ключ на транзисторах VT2 и VT5, работающий аналогично предыдущему. На вторичной обмотке Т1 имеется фаза "В".

    Затем, с выхода элемента D2.2 импульсное напряжение, уже сдвинутое на 1/3 фазы, поступает на вторую линию задержки на элементах D2.3 и D2.4, в которой происходит еще один сдвиг на 1/3 фазы. Импульсы с выхода элемента D2.4 поступают на третий ключ на транзисторах VT3 и VT6, в коллекторной цепи которого включена первичная обмотка трансформатора Т3, а на на его вторичной обмотке выделяется переменное напряжение третей фазы.

    Микросхемы: D1 - К561ЛЕ5, D2 -К561ЛП2. Микросхемы могут быть из серии К176, но в этом случае напряжение питания нужно понизить до 9В (вместо 12В). Транзисторы КТ604 можно заменить на КТ940, транзисторы КТ848 - на КТ841. Трансформаторы Т1-Т3 одинаковые трансформаторы, рассчитанные на получение нужного напряжения при подаче на их первичную обмотку напряжения 220В. Например, если требуется получить трехфазное напряжение 36В нужно взять трансформаторы 220В/36В на нужную мощность. Для питания микросхем используется

    источник постоянного стабилизированного напряжения 12В. Напряжение +300В получается выпрямлением сетевого напряжения 220В при помощи диодного моста, например на диодах Д242 или других мощных диодах на напряжение не менее 300В. Сглаживание пульсаций производится конденсатором на 100мкф/360V (как в источнике питания телевизора УСЦТ). Это постоянное напряжение подается на точку "+300V. Можно подавать и меньшее напряжение, при этом соответственно будут изменяться и выходные напряжения.

    В процессе настройки нужно, подбором сопротивления R1, установить при помощи частотомера частоту на выводе 10 D1 равную 200 гц, а затем подбором R2 и R3, при помощи фазометра установить сдвиг фаз по 120°.

    Если требуется трехфазное напряжение частотой 400 Гц величины элементов меняются на такие: R1 = 178 ком, R2 = 60 ком, R3 = 60ком. Все детали, кроме выходных транзисторов и трансформаторов монтируются на одной печатной плате из одностороннего стеклотекстолита. Выходные транзисторы должны быть установлены на теплоотводящие радиаторы с площадью поверхности не менее 100 см2.

    Вид печатной платы источника трехфазного напряжения

    В настоящей статье рассмотрена схема несложного устройства, позволяющего реализовать управление силовой схемой частотного асинхронного привода. Статья ориентирована на радиолюбителей, интересующихся разработкой и изготовлением самодельных регуляторов частоты вращения асинхронных двигателей, в том числе при питании их от бытовой однофазной сети.

    Важное замечание. В статье не рассматриваются вспомогательные системы, без которых построение законченной схемы привода невозможно, а именно: источники питания всех узлов привода, схема сопряжения низковольтной схемы управления и силовой схемы инвертора (драйверы силовых ключей), собственно силовая схема инвертора. Разработка этих узлов остается на усмотрение читателей.

    Частотно-управляемый (или регулируемый) асинхронный привод (далее просто привод) обычно строится по схеме "питающая сеть - выпрямитель - фильтр - трехфазный инвертор напряжения - приводимый асинхронный двигатель (далее - АД)". Питающая сеть может быть как бытовой однофазной, так и промышленной трехфазной, соответственно и выпрямитель делается одно- или трех-фазным. В качестве фильтра, как правило, используются Г-образные LC-фильтры, в системах малой мощности допустимо применение обычного сглаживающего С-фильтра.

    Наиболее сложным узлом является инвертор напряжения. Последние годы он строится на основе полноуправляемых силовых ключей - транзисторов (MOSFET или IGBT), а еще совсем недавно применялись схемы на полууправляемых ключах (тиристорах). Задача инвертора - получение из постоянного напряжения регулируемого по частоте и действующему значению трехфазного напряжения. Регулирование частоты особой сложности не вызывает, а вот для регулирования действующего значения напряжения приходится применять ШИМ модуляцию, что далеко не просто.

    Управление силовыми ключами инвертора осуществляет по определенному алгоритму специальный управляющий контроллер (иначе говоря - схема управления). Алгоритм управления подразумевает не только реализацию функций регулирования частоты и действующего значения выходного напряжения, но так же и реализацию защиты силовых ключей от перегрузок и КЗ. В некоторых случаях дополнительно реализуются функции регулирования момента на валу АД и другие специфические задачи, неактуальные для любительского применения.

    Разработка схемы управления инвертором с полным набором функций - задача слишком сложная, чтобы рекомендовать ее широкому кругу любителей электроники, однако в усеченном, но достаточном для бытового применения (и даже для некоторых особых промышленных случаев, например, приводов вентиляции) решить ее возможно - см. статьи в журналах Радио №4 за 2001 г. и №12 за 2003 г (можно скачать из ). К сожалению, в этих конструкциях есть несколько недостатков, в частности, невысокая стабильность параметров из-за смешанного полуаналогового-полуцифрового подхода, непроработанность систем защиты и др. Попытка избавиться от этих недостатков и одновременно расширить функциональные возможности системы управления вылилась в создание схемы управления инвертором напряжения на недорого микроконтроллере (см. Рисунок 1 ), которая и предлагается к повторению.

    Рисунок 1. Принципиальная схема

    Краткие характеристики и особенности:

    • формирование последовательности импульсов управления силовыми ключами по алгоритму, реализующему линейную зависимость действующего значения напряжения от частоты;
    • регулирование частоты выходного напряжения инвертора от 5 до 50 Гц;
    • быстродействующая защита силовых ключей инвертора от токов КЗ;
    • возможность использования в качестве датчика тока схемы защиты как специализированного датчика (например, фирмы LEM ), так и обычного шунта;
    • возможность подключения дополнительного дисплея с последовательным интерфейсом для индикации текущей и заданной частоты;
    • чрезвычайная простота схемы - всего 4 микросхемы, включая микроконтроллер.

    В схеме используется недорогой микроконтроллер AT89C2051-24PI . Он реализует все требуемые функции по специально разработанной программе.

    Разъем XP3 служит для подключения напряжения питания схемы управления 5 В (контакты 1 и 4), а так же для подключения к схеме драйверов силовых ключей инвертора (контакты 12 - 17).

    Разъем XP1 служит для подключения сигнала с датчика тока инвертора. Если используется датчик тока фирмы LEM или аналогичный, то обязательно наличие нагрузочного резистора R0 , его сопротивление определяется типом датчика. Если в качестве датчика используется шунт, то этот резистор не нужен. Шунт должен быть рассчитан так, чтобы при наличии тока КЗ в цепи постоянного тока инвертора на нем падало напряжение от 3 до 5 В. Если напряжение существенно ниже, может потребоваться дополнительный каскад усиления.

    Схема защиты построена на компараторе DA1A и триггере DD1.1 и работает так. Напряжение с датчика тока через защитную цепь R1 -VD1 поступает на неинвертирующий вход компаратора DA1.A , а на инвертирующий его вход поступает пороговое напряжение с подстроечного резистора R2 . Когда напряжение с датчика тока превысит пороговое, компаратор сработает, и высокий логический уровень с его выхода поступит на тактовый вход триггера DD1.1 , который переключится и сигналом со своего вывода 5 переведет микроконтроллер в состояние сброса. При включении питания триггер DD1.1 устанавливается в состояние сброса при помощи цепи R5 -C1 . Чтобы сбросить схему защиты в рабочее положение и запустить тем самым инвертор, следует кратковременно нажать на кнопку SB1 .

    Когда поступление сигнала сброса на микроконтроллер DD2 прекратится, он начнет выполнение своей программы. Сначала происходит внутренняя инициализация микроконтроллера, а затем подается сигнал разрешения работы шинного буфера DD3 "GATE ". Этот буфер используется для быстрого отключения выходных управляющих сигналов при срабатывании защиты, т.к. при поступлении сигнала сброса на микроконтроллер на всех его выходных портах устанавливается высокий логический уровень, в том числе и на линии "GATE ", что переводит выходы DD3 в Z-состояние. Благодаря резисторам R9 -R14 на выходах схемы управления, помеченных "VT1 " - "VT6 ", устанавливается низкий логический уровень, что соответствует запертому состоянию всех силовых ключей инвертора. Светодиод HL1 индицирует режим работы схемы управления: зеленое свечение "работа", красное - "защита".

    Такое построение схемы защиты обусловлено тем, что быстродействия современных недорогих микроконтроллеров явно недостаточно для реализации защиты программными средствами. Это относится не только к используемому микроконтроллеру, но так же и к более быстродействующим AVR и PIC.

    При помощи резистора R8 устанавливается желаемое значение частоты выходного напряжения инвертора. Вне зависимости от положения движка R8 , сразу после начала работы инвертор формирует выходные сигналы для частоты напряжения в 5 Гц. Затем, проанализировав положение движка этого резистора, микроконтроллер начинает постепенное повышение частоты до заданного уровня. Изменение частоты происходит дискретно с шагом в 1 Гц, причем скорость изменения установлена в 2 Гц/сек. Это сделано для исключения скачкообразного изменения выходной частоты, что может привести к возникновению ударных токов в АД и механическим перегрузкам в приводном механизме.

    К разъему XP2 можно подключить дисплей с последовательным интерфейсом, при помощи которого отображаются заданное и текущее значения частоты, для работы схемы наличие дисплея необязательно. В авторском варианте применен на шести семисегментных светодиодных индикаторах и шести регистрах с последовательным вводом и параллельным выводом данных.

    Рисунок 2 Чертеж сторон печатной платы

    Рисунок 3 Расположение элементов на плате.

    Для схемы управления разработана печатная плата (см. Рисунок 2 ). Размещение элементов схемы показывает Рисунок 3 . В качестве разъемов использованы штыревые вилки типа PLS . Микроконтроллер DD2 устанавливается в панель, чтобы обеспечить возможность перепрограммирования. Двухцветный светодиод - любой, кристалл красного свечения подключается к резистору R16 . Кнопка SB1 - любая тактовая, подстроечный резистор R3 типа СП5-16 , переменный R8 - любой. Тип резисторов и конденсаторов принципиального значения не имеет, важно только, чтобы напряжение электролитических конденсаторов было не менее 10 В. Неэлектролитические конденсаторы - дисковые керамические.

    Алгоритм работы схемы управления поясняют диаграммы выходных сигналов и соответствующие им диаграммы выходных напряжений инвертора (при активной нагрузке) - см. Рисунок 4 и Рисунок 5 . Длительность импульсов 1,11 миллисекунды, а длительность паузы между ними (внутри пачки) зависит от частоты, и при частоте выходного напряжения инвертора 50 Гц составляет около 20 микросекунд (защитный интервал, полностью исключающий возможность возникновения сквозных токов в инверторе).

    Рисунок 4 Диаграмма выходных сигналов схемы управления

    Рисунок 5 Форма выходных напряжений инвертора при активной нагрузке

    Схема управления была испытана с использованием мощного инвертора на IGBT транзисторах MBN1200C33 (HITACHI), к которому подключался АД мощностью 55 кВт с номинальной частотой вращения 1500 мин-1, нагруженный на центробежный вентилятор. Сбоев в работе схемы управления не было. Фактическую форму напряжений на выходе инвертора с вышеуказанным АД демонстрируют осциллограммы - см. Рисунок 6 и Рисунок 7 .

    Рисунок 6 Фазные напряжения на двигателе

    Рисунок 7 Фазные напряжения на двигателе

    Качественные изображения схемы, рисунка проводников печатной платы, бинарный файл прошивки, можно скачать в , а некоторые дополнительные сведения об особенностях построения остальных, не рассмотренных в настоящей статье, узлов привода и инвертора можно получить из дополнительной статьи-приложения, находящейся там же.


    (3) | Просмотров: 132858

    Генератор, схема которого приведена на рис.1, может найти применение в различных преобразователях однофазного напряжения в трехфазное. Он проще описанных в .

    Рис. 1 Схема трехфазного генератора импульсов

    Устройство состоит из генератора тактовых импульсов DD1.1 ...DD1.3, формирователя DD2 и инверторов DD1.4...DD1.6. Частоту тактового генератора выбирают в 6 раз выше частоты необходимого трехфазного напряжения и рассчитывают по приближенной формуле

    Формирователь выполнен на сдвиговом регистре, включенном по схеме счетчика-делителя частоты на 6. На выходах 1, 3 и 5 (выводы 5, 6, 13)

    Рис. 2 Выходные сигналы трехфазного генератора импульсов

    DD2 образуются прямоугольные импульсы, сдвинутые на 1/3 периода со скважностью 2. К выходам DD2 для развязки подключают инверторы DD1.4...DD1.6. Выходные сигналы генератора показаны на рис.2.

    А.РОМАНЧУК

    Литература

    1. Шило B.Л Популярные цифровые микросхемы. - Радио и связь,1989, С.60.

    2. Ильин А. Подключение трех-фазных пoтpeбитeлeй к однофазной цепи. - Радиолюбитель, 1998, N10, С.26.

    3. Кроер Ю. Трехфазное 200 Гц из 50 Гц. - Радиолюбитель, 1999, N10, С.21.

    4. Пышкин В. Трехфазный инвертор. - Радио, 2000, N2, С.35.

    Тема питания трехфазного электродвигателя от однофазной сети не нова, но по-прежнему остается актуальной. Сегодня мы предлагаем вниманию читателей еще одно техническое решение проблемы. Для упрощения задающего генератора - основы трехфазного инвертора, обеспечивающего питание такого двигателя, - автор статьи предлагает использовать микроконтроллер.
    За последние годы в журнале "Радио" описано немало трехфазных инверторов - преобразователей постоянного или переменного однофазного напряжения в трехфазное. Эти устройства предназначены, как правило, для питания асинхронных трехфазных электродвигателей в отсутствие трехфазной сети. Многие из них позволяют регулировать частоту вращения вала двигателя путем изменения частоты питающего напряжения.
    Кроме мощных выходных узлов, непосредственно связанных с двигателем, все инверторы содержат задающий генератор, формирующий необходимые для работы названных узлов многофазные импульсные последовательности. Собранный на стандартных логических микросхемах, такой генератор представляет собой довольно сложное устройство. Особенно усложняет его необходимость при регулировке частоты импульсов изменять по определенному закону их скважность (для сохранения тока в обмотках питаемого от инвертора электродвигателя в допустимых пределах). Часто применяемая одновременная регулировка этих параметров обычным сдвоенным переменным резистором не позволяет соблюдать нужную взаимосвязь с достаточной степенью точности.
    Все эти проблемы легко решаются с помощью микроконтроллера (МК). Схема задающего генератора (рис. 1) упрощается до предела, а все его свойства реализуются программно. Здесь элементы U1.1-U6.1 - излучающие диоды транзисторных оптронов, связывающих генератор с мощными узлами инвертора. Через диоды U1.1, U3.1 и U5.1 ток протекает в интервалы времени, когда должны быть открыты "верхние" (по схеме) ключи фаз А, В и С соответственно, а через диоды U2.1, U4.1, U6.1, когда должны быть открыты "нижние" ключи этих фаз. Значения тока, протекающего через излучающие диоды, можно изменить подбором резисторов R3-R5, но они не должны превышать допустимых для МК 25 мА.
    В оптоизолированной от задающего генератора мощной части инвертора импульсы нужной полярности для управления ключами формируют с помощью узлов, выполненных по схемам, показанным на рис. 2 (а - положительной, б - отрицательной). Здесь Uп.2 - фототранзисторы оптронов U1-U6 (см. рис. 1). Напряжение питания Uпит и номинал резистора R1 выбирают в зависимости от типа применяемых в инверторе мощных ключей и их драйверов.


    Переключателем SA1 (см. рис. 1) выбирают одно из четырех значений частоты трехфазного напряжения. В прилагаемом к статье варианте программы (файл G3F629.HEX) два из них ниже номинального (50 Гц), а одно выше. Длительность формируемых импульсов при номинальной и повышенной частотах немного меньше полупериода их повторения, что исключает одновременное открывание "верхнего" и "нижнего" ключей одной фазы. Понижение частоты относительно номинальной достигается увеличением пауз между импульсами, длительность которых остается той же, что и при номинальной частоте. Этим обеспечивается неизменность амплитуды импульсов тока в обмотках двигателя и предотвращается насыщение его магнитопровода. Если необходимости в изменении частоты нет, переключатель SA1 и диоды VD1, VD2 исключают (устройство будет генерировать импульсы с частотой повторения 50 Гц). Вместо МК PIC12F629 можно применить PIC12F675.
    Схема аналогичного генератора на МК PIC16F628 показана на рис. 3. Его основное преимущество перед рассмотренным ранее - возможность подключения к МК внешнего кварцевого резонатора ZQ1 и увеличения частоты формируемых сигналов пропорционально отношению частот резонатора и внутреннего генератора МК (4 МГц). Например, при частоте резонатора 20 МГц максимальная частота трехфазного напряжения достигнет 88,5x20/4 = 442,5 Гц (здесь 88,5 Гц - максимальная частота, которая может быть установлена при частоте тактового генератора МК - встроенного или с внешним кварцевым резонатором - 4 МГц). Если повышать частоту не нужно, кварцевый резонатор ZQ1 и конденсаторы С1, С2 (на рис. 3 показаны штриховыми линиями) не устанавливают, а МК конфигурируют на работу от встроенного RC-генератора. Именно на такую конфигурацию устройства рассчитан прилагаемый к статье вариант программы G3F628.HEX. Без изменений в схеме и программе допустима замена PIC16F628 на PIC16F628A или PIC16F648A.


    Оптическая развязка задающего генератора и мощных узлов трехфазного инвертора в данном случае не предусмотрена, однако ее несложно организовать, подключив к паре выходов каждой фазы излучающие диоды оптронов по схеме, изображенной на рис. 4. Кроме развязки, такое схемное решение дополнительно гарантирует, что "верхний" и "нижний" ключи каждой фазы не будут открыты одновременно (при одинаковых уровнях напряжения на выходах МК ток через излучающие диоды отсутствует, а при разных течет только через один из них).
    Если записанные в программе МК по умолчанию значения частоты и скважности импульсов по каким-либо причинам не подходят, их можно изменить (а в варианте для МК PIC16F628 еще и поменять полярность выходных импульсов). Для этого предназначена компьютерная программа "Настройка трехфазного генератора" (G3F.exe), после запуска которой на экран монитора выводится окно, показанное на рис. 5.


    Настройку начинают с выбора МК, для которого предназначена откорректированная программа. Затем при необходимости изменяют указанные в таблице значения частоты формируемых импульсов и их коэффициента заполнения (обратная скважности величина, называемая в англоязычной литературе "duty cycle"). Делают это с помощью имеющихся в соответствующих графах таблицы кнопок со стрелками. Значения "некруглые", они изменяются с предусмотренной в программе МК дискретностью. Пределы изменения частоты в каждом положении переключателя SA1 ограничены значениями, установленными для его положений с меньшим и большим номерами. Наибольшая частота, которая может быть установлена при частоте тактового генератора МК 4 МГц, равна, как уже говорилось, 88,5 Гц, наименьшая - 8,02 Гц.
    Значение коэффициента заполнения можно изменять вручную в пределах от нуля (импульсы отсутствуют) до 98,33 % (пауза между импульсами, открывающими "верхние" и "нижние" ключи, минимальна). Если же нажать на экранную кнопку "Автоматически", за основу будет принят коэффициент заполнения для положения переключателя SA1, соответствующего номинальной частоте (оно обозначено "ном."). Для частоты выше номинальной коэффициент будет установлен таким же, а ниже ее снижен пропорционально частоте. Заметим, что за номинальное может быть принято любое положение переключателя - достаточно "щелкнуть" мышью рядом с его номером.


    Поля "Тактовый генератор" и "Полярность импульсов", расположенные ниже таблицы режимов работы генератора, активны только при выборе МК PIC16F628. В первом из них выбирают тип тактового генератора и при необходимости уточняют его частоту. Во втором устанавливают полярность выходных импульсов отдельно для каналов управления "верхними” и "нижними" ключами. Учтите, что при использовании оптической развязки по схеме, изображенной на рис. 4, полярность импульсов может быть любой, но обязательно одинаковой. В других случаях ее выбирают в зависимости от особенностей мощных узлов инвертора.
    Закончив установку всех нужных значений, нажмите на экранную клавишу "Создать НЕХ-файл". Откроется окно, в котором следует указать имя этого файла (программа предлагает G3F.HEX), место на жестком диске компьютера, куда он будет записан, и затем нажать на экранную кнопку "Сохранить". Остается загрузить созданный файл в программную память МК.


    В заключение - об имеющемся в окне программы настройки генератора пункте "Демо”. Если его отметить, будет сформирован вариант программы с уменьшенными в 32 раза относительно указанных в таблице значениями частоты формируемых импульсов. Если в генераторе, собранном по схеме рис. 1, загрузить его в МК, к которому вместо излучающих диодов оптронов подключена светодиодная сборка DLA/6GD (рис. 6), можно увидеть поочередные вспышки шести расположенных в ней по окружности светодиодов, что имитирует вращение ротора трехфазного двигателя. Такую конструкцию вполне можно использовать как игрушку или сувенир. Светодиодную сборку можно заменить шестью единичными светодиодами, в том числе разного цвета свечения, смонтировав их на плате подходящих размеров.
    ЛИТЕРАТУРА
    1. Дубровский А. Регулятор частоты вращения трехфазных асинхронных двигателей. - Радио, 2001, № 4, С. 42, 43.
    2. Калугин С. Доработка регулятора частоты вращения трехфазных асинхронных двигателей. - Радио, 2002, N9 3, с. 31.
    3. Нарыжный В. Источник питания трехфазного электродвигателя от однофазной сети с регулировкой частоты вращения. - Радио, 2003, № 12, с. 35-37.
    4. Мурадханян Э. Управляемый инвертор для питания трехфазного двигателя. - Радио, 2004, № 12, с. 37, 38.
    Материал взят из: Журнала Радио 2008 №12

    В архиве Программа, Прошивка и Исходный код

    (cкачиваний: 2447)